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ON THE EFFECTS OF MONOENERGETIC  ELECTRONS IN A 

STEADY-STATE, LOW PRESSURE  PLASMA 

by  Nelson  L.  Milder 

Lewis  Research  Center 

SUMMARY 

This  paper  describes a steady-state  free-fall  theory of a one-dimensional, low- 
pressure,  beam-generated  plasma  in a plane  diode  configuration.  The  motivation  for 
this work  derives  from  the  fact  that  the low pressure  plasma  discharge  encountered  in 
electron-bombardment  thrusters is believed  to  develop  an  electron  density  composed of 
both  monoenergetic  and  Maxwellian  electrons.  It is of interest  to  determine  the  effects 
of such a distribution on plasma  potential,  plasma-sheath  boundaries, ion current  den- 
sity,  and  mean  ion  energy. For this reason  the  earlier  theory of the  positive  column 
introduced  by  Tonks  and  Langmuir was expanded  to  include  an  electron  density  consist- 
ing of a superposition of cathode  emitted,  collisionally  scattered  monoenergetic (pri- 
mary)  electrons upon a Maxwellian  distribution.  Cases are considered  in which  the  pri- 
mary  electron  space  charge  contributes  to  plasma  neutralization as well as ion  produc- 
tion. In such  cases,  the  potential  distribution,  ion  current  density,  and  mean  ion  energy 
in  the  plasma  differ  from  the  primary-free  case. 

The  presence of a monoenergetic  electron  space  charge  density  made  the  usual 
Tonks-  Langmuir  plasma-sheath  boundary  condition  inapplicable.  (The  Tonks-  Langmuir 
condition is that the reciprocal of the  spatial  variation of potential is zero at the  sheath. ) 
Instead,  the Bohm sheath  criterion  was  used  to  replace  the  Tonks-Langmuir  boundary 
condition  by one that  depends on primary  electron  collision  phenomena.  Plasma  poten- 
tial depended on the  primary  electron  density,  ionization  frequency,  and  to a lesser  ex- 
tent,  beam  scattering  phenomena. 

Approximate  models of the  plasma  discharge are considered  in which  the pr imary 
electrons  contribute  to  ionization  but not to  the  space  charge  density. With the  appro- 
priate  choice of parameters,  potential  profiles  obtained  from  the  approximate  models 
coincide  with  profiles  from a more  complete  model  over a wide range.  The  solutions 
based on the  approximate  models  are  more  easily  obtained  and  can be used  to  investi- 
gate  appropriate  regions of low pressure  plasmas. 



INTRODUCTION 

This  paper  describes a steady-state  theory of a beam-generated  plasma  in  which 
beam  electron  scattering  by  collisions is included.  The  motivation  for  this  work  derives 
from  the  fact  that  the  low-pressure  plasma  discharge  encountered  in  electron- 
bombardment  thrusters is believed  to  develop  an  electron  density  composed of both 
monoenergetic  primary  electrons  and  Maxwellian  electrons (ref. 1).  It is of interest   to 
determine  the  effects of such a distribution  on  plasma  phenomena. 

The  analysis  considers a one-dimensional  configuration  associated  with a plane 
parallel  diode  system.  The  diode  consists of a plasma  discharge  region  between a 
cathode  emitter  and  an  anode. In previous  work  on  beam-generated  plasma  in a plane 
symmetric  configuration (ref. 2), the  electron  beam  flowed  parallel  to  and  between two 
grounded  plane  electrodes.  These  electrons  were  presumed  to  suffer  no  scattering  col- 
lisions  and  were  the  principle  source of ionization.  The  present  study  considers  effects 
of an  electron  distribution  consisting of cathode-emitted  monoenergetic  primary  elec- 
trons  superimposed upon a Maxwellian  electron  distribution.  The  primaries are allowed 
to  suffer  nonionizing as well as ionizing  collisions.  The details of such  collisions  need 
not  be known explicitly. 

For the  case  in  which  primaries  contribute  to  the  space  charge  density  in  the 
plasma, a low pressure  approximation is used. In essence, this means  that  the  primary 
electron  mean free path X is of the  order of o r  greater  than  system  dimensions.  The 
primary  electrons  in  the  plasma are assumed  to  follow  an  exponential  spatial  distribu- 
tion -e in  their  flow  from  cathode  to  anode. Ion generation is taken  to  be  propor- 
tional  to  contributions  from both primary  and  Maxwellian  electrons. 

The  theory is based upon an  extension of the  one-dimensional  free-fall  theory of 
Tonks  and  Langmuir (ref. 3 ) .  Starting with the  one-dimensional  Poisson  equation,  an 
integral  equation is derived  in  reference 3,  which is presumed  to  be  valid  in  both  the 
plasma  and  collisionless  sheath  regions of the  discharge.  This  equation is the  Tonks- 
Langmuir  plasma-sheath  equation.  Solutions  to this equation  yield  the  plasma  potential 
distribution.  The  original  theory,  in which second  order  terms could be neglected, re- 
sulted  in  solutions  for  the  potential  and  current  distributjons  in  plane,  cylindrical,  and 
spherically  symmetric  low-pressure  plasma  arcs.   Interest   in  this  theory  was  increased 
by  the  work of Harrison  and  Thompson  (ref. 4) on a low pressure,  plane  symmetric  dis- 
charge.  Their  paper  stimulated  further  work by several  authors  (refs. 5 to 9). Recent 
efforts  extend  the  work of Dunn and Self (ref. 2) to a cylindrically  symmetric  beam- 
generated  plasma (ref. 10) and  provide  experimental  verification of the  collisionless 
sheath  theory (ref. 11). 

The  present  calculations  yield  information on the  effects of different 
generation on the  plasma  potential  distribution  and  ion  current  density  in 

modes of ion 
the  plasma  due 
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to  the  presence of monoenergetic  electrons. In addition,  the  mean  ion  energy  and  Bohm 
sheath  criterion are investigated  in  the  context of the  theory.  The  presentation  begins 
with a description of the  physical  system  to be considered.  The  analysis  incorporates 
an  electron  distribution  consisting of primary  beam  electrons  plus  Maxwellian  electrons. 
In the  limit of vanishingly  small  ratio of Debye  length to  characteristic  plasma  length, 
this equation  reduces  to  the  so-called  plasma  equation  in  which  charge  neutrality  holds. 
Solutions  to this plasma  equation are investigated. 

PHYSICAL SYSTEM 

A  schematic  diagram of the  diode  configuration  to be studied is given  in  figure 1 .  
In the  figure  the  plasma  potential at potential  maximum is assumed  zero.  Electrons 

emitted  from  the  cathode  gain  kinetic  energy  in  the  cathode  sheath  and  arrive at the 
potential  maximum  with  an  energy Vc, where Vc is the  cathode  potential.  The  dashed 
line  represents the potential  variation  in  the  sheath  regions. As a result  of ion  produc- 
tion  and  randomizing  processes,  the  two  kinds of electrons  presumed  to exist in  the 
plasma  discharge  region are cathode  emitted  monoenergetic  electrons  (primaries)  and 
Maxwellian  electrons at uniform  temperature  T.  Primaries  suffer  collisions  (ioniza- 
tion,  excitation,  scattering,  etc. ) when they  traverse the discharge.  Once a primary 
electron  suffers  an  energy  absorbing  or  scattering  collision, it is assumed  to be re- 
rnoved  from  the  beam, so that  the  primaries  follow  an  exponentially  decaying  spatial 
distribution. 

The  plasma  discharge  occupies  the  region  shown on figure 1.  The  region  considered 
herein  for  analysis is between  the  potential  maximum  and  the  anode  sheath.  (Except  for 
the  absence of a magnetic  field, this approximates the cathode-anode  region  in  the  ion 
thruster.  ) In this  region the potential is decreasing  monotonically  towards the anode. 
Potential  defined  in this manner is thus  negative. A low pressure  plasma is assumed, 
s o  that  plasma  ions  have  an  effective  collisional  mean free path  greatly  in  excess of the 
cathode-anode  spacing. Ion motion  in  the  plasma is determined  solely  by  the  electric 
fields  developed  from  slight  deviations  from  charge  neutrality.  These fields are 
assumed  to  be so  small  that they  provide a negligible  perturbation  on the primary  elec- 
tron  energy.  (Conditions  for  plasma  shielding  by  space  charge  sheaths  have  been  given 
by  Friedman  and  Levi (ref. 12). ) The  anode ac t s  as a charged  particle  sink, s o  that no 
reflection of charged  particles  back  into  the  discharge  plasma  occurs. 

In this study  only  the  steady-state  properties of such  discharges are considered. In 
particular,  only  the  plasma  approximation  in  which  the  Debye  length AD is much less 
than the characteristic  plasma  length L ('proportional to  the  electron  mean free path  for 
ionization) is solved. 
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THEORY 

The  starting point for  the  calculation is the  Poisson  equation 

(All symbols  defined  in  appendix A. All  quantities  are  in SI units. ) Following  Tonks  and 
Langmuir,  an  expression for the  ion  density at z (z 2 0) is obtained as follows: Con- 
sider all positions z' < z at which ions are created by electron  bombardment. It is 
desired  to  obtain  the  ion  density at z  resulting  from  ion  production at all positions  z'. 
This  density is 

Z 
ni(z) = f Ni(z')[v(z,  dz' 

0 

where  Ni(z') is the  volume  ion  production rate, and 

is the  speed of ions  produced at z '   arriving at z. The  electron  density is assumed  to 
be a superposition of Maxwellian  and  monoenergetic  (primary)  components  (analogous  to 
ref. 2), 

r - 
ne (z) = nm (0) exp le::)] - + np(0)  exp(-z/X) 

n (0) is 
The  ion 
P 

where h is the  total  collisional  mean  free  path  for  primary  electrons, T is the  Max- 
wellian  electron  temperature,  nm(0) is the  Maxwellian  electron  density at z = 0, and 

the  primary  electron  density at z = 0. Also  note that V(0) = 0 by definition. 
generation is given  by 

* 
Ni(z') = vmne (z') 

where 

* 

The  parameter vm is the  ionization  frequency  for  Maxwellian  electrons, 5 = v /v is 
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the  ratio of primary  electron  ionization  frequency  to  Maxwellian  electron  ionization  fre- 
quency,  and cp is the  electron  density  ratio  n (0)/nm (0). For   mercury t ,  the  ioniza- 

tion  frequency  ratio, is of the  order of 10 to 10 , but  in  cesium, t is of the  order of 
10  to lo2 (ref. 13). 

P 
3 

The  introduction of the  dimensionless  variables 

s = -  z 
L 

into  the  Poisson  equation  (1)  results  in 

Here XD is the Debye length [EokT/e 2 nm(Oj] 1/2 , L is a characteristic  length  to be de- 

fined,  and p is the  mean  free  path  ratio L/h. Since L in  equation (8) is an  adjustable 
constant, 
to  unity. 

it is convenient  to  define it so as to  render  the  coefficient of the  integral  equal 
Thus 

or,  alternatively, 
wellian  electrons 

L can be defined as the  reduced  mean  free  path  for  ionization by Max- 

In the  form of equation (8 ) ,  the  Poisson  equation is the  complete  Tonks-Langmuir 
plasma-sheath  equation  valid  throughout  the  plasma  and  sheath  regions of the  discharge. 
A general  closed  form  solution  to this integro-differential  equation is not  attainable. 
Numerical  solutions  for  the  case cp = 0 have  been  given  by Self (ref. 6). A general 
simplification  to be used  in this study is that  within  the  main  body of plasma, AD << L 
in  equation (8).  That is, in  the  plasma  discharge  region of figure 1, the Debye length is 
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presumed  to be  much less than  the  characteristic  length L. This  leads  to  the  plasma 
condition 

ni M n e (11) 

and is equivalent  to  the  statement that plasma  potential  gradient  changes little over a 
Debye  length.  The  complete  equation (8) thus  reduces  to  the  integral  equation 

where  g(s) is defined as ne(s)/nm(0).  Equation (12) states that both  Maxwellian  and 
primary  electrons  contribute  to  space  charge  neutralization as well as ion  production  in 
the  plasma.  Solutions  to  the  plasma  equation (12) for  the  case ,p = 0 have  been  given  in 
references 2 and 3 .  Solutions  for  the  case p = 0, g(s) = 1 have  been  given  in  refer- 
ence 2. For the  problem  considered  herein  equation (12) was  solved on a digital  com- 
puter  in  the low pressure  approximation ps << 1 .  (J. S .  Sovey and  R. W. Palmer assist- 
ed  in  performing  some of the  numerical  calculations. ) In this  general low pressure  case,  
the  primary  and  Maxwellian  electrons  contribute  to  both  the  ionization  and  space  charge. 
In a later  section,  the  limiting  case  in  which  the  primaries do  not contribute  to  space 
charge  are  considered. 

* 

GENERAL LOW PRESSURE SOLUTION 

Equation (12) can  be  solved  in  the low pressure  approximation ps << 1 to  yield  the 
plasma  potential  distribution = q(s) (appendix B). A se r i e s  solution of the  form 

03 

s = a p x p  
p = l  

was used,  where x = 4. Recurrence  relations  for  the  coefficients  are 

(- 1 p 2  I-1 + - Cpva2p+1-2v 
I-L P- 1 I -  2 

(2p - l)!! 2 * v = l  - 2p(p v=o c v p a w  a(2p + 1)(<cp + 1) 
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where 

with 

p = 1,2,  . . . 

and 

where 

with 

p = 1,2 ,  . . . 

In the  relations (14) and (16),  we  have 

- -”[ (-1) (-1)v(2p + l)! 
B w  22p  (2p + 1 - 2v)(2p + 1 - v)!v!  1 

% V  -7 - (-lY (2p + 1 - 2v) 

J 
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For ty   t e rms  of the  ser ies  (13) were  computed  and  found  to  converge  rapidly  for 77 5 1.2 
independent of the  values of 5 ,  p, and p used.  Several  solutions are shown  graphi- 
cally  in figure 2 for  various  values of the  parameters.  An interesting  feature is noted 
from  the  curves of figure 2. The  Tonks-Langmuir  (T-L)  boundary  condition (which de- 
fines  the  limit of validity of the  plasma  equation) 

"=o d s  

d77 

is not satisfied  for  any cp # 0. In fact,  for  very  small p (cp < and < cp < 10- , 
the  solutions  approach a limiting  curve  which  closely  approximates  the cp = 0 solution 
for 77 5 The  lack of agreement  for 77 > 5 implies  that  the  inclusion of a monoener- 
getic  electron  space  charge  density  precludes  locating  the  sheath  boundary by  solving 
the  Tonks-Langmuir  plasma  equation.  The  reason  for this behavior  can be explained 
as follows.  Transforming  equation (12) by means of the SchlGmilch inversion (appen- 
dix  B)  yields 

1 

1 
2' 

where D ( h )  is the Dawson  function. For q = 0.854, where 

equation (20) reduces  to 

Because  the  denominator of equation (22) does not  vanish at = 0.854 for nonvanishing 
cp , the  Tonks-Langmuir  boundary  condition (19) cannot  be  satisfied. 

This is true  even if  the  denominator of equation (22) vanishes  for  some r ]  > 0.854 
satisfying f(q) = (l/p), since  then  the  factor 1 - 2 f i  e-77D(fi) would  not vanish.  Thus, 
as 77 - 0.854 in  the  limit 5 cp - 0, the  solutions  depend on the  values of 5 ,  cp, and p 

and on the  nature of the  approximations  used  to  evaluate J(q). 
In general,  the  solutions  were  nearly  independent of p .  Thus,  in  the  plasma,  the 

potential  distribution is essentially  dependent  only on the  relative  number of pr imaries  
entering  the  discharge  and  their  ionization  rate,  while  depending  only  slightly on pri- 
mary  electron  scattering  phenomena. 

8 
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SPECIAL CASES - NO PRIMARY ELECTRON CONTRIBUTION TO  SPACE CHARGE 

Both Primaries  and  Maxwellians  Produce  Ionization, cp << 1 

As  shown  in  appendix  B,  equation (12) can  be  transformed  by  means of the 
Schl6milch  inversion (ref. 14) into a form  amenable  to  computation. In cases  for which 
the  primary  contribution  to  space  charge  neutralization is negligible (i. e .  , cp << l), the 
Schl6milch  transformation  yields  the  differential  equation 

The  condition (19) is satisfied when the  denominator of (23) vanishes.  This  leads  to  the 
usual  Tonks-Langmuir  value of q as determined by Harrison  and  Thompson  (ref. 4). 
We thus  note  that  the  absence of primary  electron  space  charge  allows  the  Tonks- 
Langmuir  sheath  boundary  condition  to  be  satisfied  independent of the  nature of ion  gen- 
eration.  Numerical  solutions  to (23) a r e  plotted  in  figure 3. They a r e  functions of the 
product 5 ‘p and,  to a lesser  extent, of p.  In fact ,  at a value of 5 ‘p - 6, the  solutions 
were found to be independent of p over  two  orders of magnitude  variation. 

These  approximate  solutions  can  be  compared  to  actual  solutions  to  the  complete 
plasma  equation (12) in  the  limits, 

Such a comparison is given  in  figure 4 in which solutions  to  equation (23) for 5 ‘p = 1 
and 10 are compared  with  the  appropriate  solutions of equation (12) in which ‘p = 0.01 
and 0.001. It is apparent that a solution  to  equation (23) is a better  approximation  to  the 
actual  solution if , in  the latter case, ‘p = 0.001. Again,  the  approximate  potential  pro- 
file  diverges  from  the  actual  profile as the  Tonks-Langmuir  boundary  value of q is 
approached. 

Only Primaries  Produce  Ionization, ‘p << 1, ,$ ‘p >> 1 

Another  physically  interesting  situation  results when primaries  are  assumed  to  be 
the  only  contributors  to  ionization.  The  Maxwellian  plasma  electrons  account  for  the 
space  charge  neutralization of the  ions.  Letting 



where 

p =- 
kT 

equation  (23)  becomes  (using 5 cpe-PS >> e-v) 

ds 1 - 2 G  e - " D ( G )  

Now s = z/L,  where  L = vm(2kT/M)lI2.  Introducing a new  length 
L* = u (2eVC/M)lI2, a new  dimensionless  position s* is defined  such  that 

13 

s = (L  /L)s* . Noting  that p = (L/L )p and  remembering 
tion (26) becomes 

i * *  

with  solution 

that 5 = v /v  equa- 
P  m' 

(27) 

1 

Again  the  Tonks-Langmuir  sheath  boundary  condition  (19) is satisfied at Po = 0.854, 
and  the  solutions  depend  only  slightly on p . Since  equation  (28)  describes  the 
potential  profile of an  approximate  model of the  plasma  discharge  in  which 5 cp >> 1 
and cp << 1, the  validity of the  model  can  be  estimated by comparing  these  profiles  with 
profiles  obtained  from  solving  equation (12). Results of such a comparison are shown  in 
figure 5. Here  solutions  to  equation (27) for  values cp = 0.1  and  0.01  and  L  /L = 10- 

* 3 

are compared  with  actual  potential  profiles  in  which 5 cp = 10,  100,  and  1,000  and 
cp = and  Agreement  between  the  approximate  and  exact  curves  was 
best for cp = since  here  the  condition cp << 1 is best satisfied. A solution of 
equation  (23)  for 5 cp = 10  and  p = 1 is also  given  in  figure 5. Comparison of this 

* 

10 



solution  with  the  curve  solution  to  equation (27), shows that solutions  to  the  two  approxi- 
mate  models of the  discharge differ for 5 q = 10 by  about 6.4 percent at the  Tonks- 
Langmuir  boundary, 77 = 0.854. For  values of 77 less than  the  Tonks-Langmuir 
boundary  value,  the  difference is less. 

Condition for  Existence of Solutions, q << 1, 5 q >> 1 

An interesting  feature of equation (28) is that real, stable  solutions  require that 

1“ 2p* r e-@D (6) > 0 

This  situation  leads  to  conditions on the  plasma  parameters.  From (26) one  obtains  the 
condition 

which  holds  for all pa. In particular,  condition (30) must  hold  for  the  largest  value of 
2/s e-”D(*) = 1/2.92. Thus, when substituting  for p and p* , equation (30) be- 
comes 

where  T is in  electron  volts.  The  total  primary  electron  mean free path can be  written 
as 

1 -  1  1 
”- + -  
x xip X‘ 

where (A’)-’ represents  the sum of the  reciprocals of mean  free  paths  for all primary 
collisions  other  than  ionizing.  Substitution of (29) into (28) yields 

Relation (33) is essentially two  conditions. First, it represents  a condition on the  ioni- 
zation  mean free path  when primary  electron  collisions  other  than  ionizing  collisions 
occur. Second,  physically  useful  solutions  require that 
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cp > 1 (")'" 
2.92 MVc 

(3 4) 

or, i n   t e rms  of ion  atomic  mass A, 

(0 > 1 ( y 2  
125.3 VcA 

(35) 

Condition (35) holds  even i f  no primary  electron  collisions  other  than  ionizing  collisions 
occur.  Thus, for example, if a mercury  plasma is used,  relation (35) results in 

q > 5.65~10-~($ '~  

Relation (33) is thus a lower bound on the  allowed  value of the  primary  electron  fraction 
in  order  that  the  approximate  model of the  plasma  discharge  described by equation (27) 
be valid.  Physically, this means that strict  charge  neutrality  in  the  plasma  places a 
lower  limit on the  primary  electron  fraction  required  for  ion  production. An upper 
bound on cp can  be  estimated  from  figure 5. This  comparison  between  the  approximate 
solution  given by equation (28) and  the  actual  potential  profiles  yields, when combined 
with  relation (3 5), 

"2- ( y 2  < (0 5 0.01 
125.3 VcA 

The  lower bound in  relation (37) is the  condition  for  the  existence of real solutions 
to this approximate  model.  The  upper bound represents  the  limit on cp below which the 
approximate  solution  and  the  exact  solution  are  in  close  agreement. 

ION CURRENT  DENSITY 

The  ion  current  density  in  the  plasma  can  be  calculated  from  the  one-dimensiona] 
continuity  equation 

dJ+ - =  * 
dz mee 

where v is the  ionization  rate  and n: is given  by  equation  (6).  Equation (38) states 
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that  the  ion  current  flux is balanced  by  the  rate of ion  production.  Introducing  the 
dimensionless  variable 

where 

yields  for (38) 

Defining the  dimensionless  current  density 

and  integrating (39), one  obtains 

For those  cases  in which  the primary  electron  space  charge  contribution  can  be 
neglected, cp << 1, equation (41) yields the same  dependence of ion  flux on plasma  poten- 
tial, independent of ion  generation  mechanisms. 

At  the  Tonks-Langmuir  boundary 77, = 0.854,  equation (39) results  in I+ = 0.344.  This 
lack of dependence of I+ on the  mode of ion  generation is due to  the  nature of the  plasma 
approximation.  The  electron  density sets the  ion  density so as to  preserve  charge neu- 
trality  in  the  plasma.  Thus, as pointed  out  by  Auer (ref. 7), the  electron  distribution 
in  the  plasma  sets  the  ion  current to the  sheath. To demonstrate  the  role of the  electron 
distribution,  the  ion  flux  resulting  from  inclusion of primary  electrons  in  the  space 
charge  electron  density  can  be  calculated  numerically  from the relation 
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where 

Using a series approximation  for Y(q), the  resulting  current  density  profiles are shown 
in  figure 6. The  major  difference  between  equations (42) and (43) was found to  be  the 
first term  in (43). Variations  in  the  parameters 5 and p had  only a slight  effect on 
the  current  density.  Inclusion of the first and  third  terms of equation (43), which are 
due  to  nonvanishing q , increased  the  current  level  above  that  which  would be ob- 
tained i f  q = 0. However, as in  the  case of the q = 0 curve, a maximum  occurs 
at some  value of q. In the  case of the qc = 0 solution,  this  maximum  occurs at the 
Tonks-Langmuir  boundary  value of = 0.854. If we postulate  that  the  maximum  ion 
current is delivered  to  the  sheath  boundary,  curves of I+(q)  would  yield  the  values of 7 
at such  boundaries,  and  thus  serve  to  spatially  locate  the  plasma-sheath  boundary.  This 
postulate is justified  physically  since  the  solution  for  the  ion  current  density  including 
the  sheath would have  no  maximum.  These  maxima  in I+(r) were found to  shift  to  values 
of q > 0.854 with  increasing q. Thus at q = and 5 = 10 , the  maximum  oc- 
curred  a t  q = 0.854, but at q = 0.1 and 5 = 10  the  maximum  was at q M 1.0. 

2 
2 

BOHM SHEATH CRITERION 

The  stable  sheath  criterion as originally  derived by  Bohm (ref. 15) is a statement 
on  the  lower  limit of the  ion  energy  delivered  from  the  plasma  to a sheath  boundary. 

M(v:) 2 k T  (45) 

where T is the  electron  temperature  in  the  plasma.  The  criterion  assumes  that  the 
electron  space  charge  density is completely  thermalized at temperature T. Following 
Harrison  and  Thompson (ref. 4), the  Poisson  equation  in  the  sheath  can  be  written 

E@T  2 
- = J f (v)dv - ne 

e2 a Z 2  

where 
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"+ = f f (v)dv 

and 

Assuming  no  ion  generation or ion  momentum  transfer  collisions  in  the  sheath  region, 
ion  current  continuity  requires that 

where  the  subscript  b  denotes  sheath  boundary.  Writing  v = vsq1/2, where 
vs = (2kT/M)1/2, the  ion  density  in  the  sheath  region is 

Let 

F (q)  = 1 J vbq-1/2f (vb)dvb - np(0)e-Ps - nm (0)e-rl 
vS 

Expanding F(?]) about q = qb yields  for (46), to first order,  

-" 

e az 2 

(49 ) 

where F(qb) = (ni - ne)b = 0 in  the  plasma  approximation.  Nonoscillatory  solutions  to 

equation (50) require  that 

or 

M(vi2)  -1 2 k T t  + (:) - 111' 
b 

(51) 
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where  n = n  (0)e-PS is the  primary  electron  density  and ne is the  total  electron or  
plasma  density.  Assuming  that at the  sheath  edge 

P P  

one  obtains  the stable sheath  criterion 

If no primary  electrons  reach  the  sheath (n = 0), then one  obtains  the  usual  Bohm  cri- 
P 

terion  (45). 
It is also of interest  to note  that  in  the  limit p - 0, the  criterion (49) becomes 

M(vE) > [+) kT 

nm b 

(53) 

where nm = nm(0)e-17 and  n is the  plasma  density.  This  result is identical  to  an 
expression  used  recently  by  Masek (ref. 16)  to  describe  conditions at the  anode  sheath 
in  the  discharge  chamber of bombardment  thrusters. 

Pl 

Relation  (52)  yields a condition  that  replaces  the  Tonks-Langmuir  boundary  condi- 
tion  given  by  equation  (19). If primary  electrons are presumed  to  arrive at the  sheath 
boundary,  then  in  order  that  the Bohm sheath  criterion,  given  by  inequality (45), be 
satisfied, one has  the  condition  (from  eq.  (52)) 

- 5 -  ds 1 

d17 P 
(5 4) 

at the  plasma-sheath  boundary.  Condition  (53) states that  the  potential  gradient at the 
sheath  boundary  depends on primary  electron  collision  phenomena.  It is a less restr ic-  
tive  condition  than  the  Tonks-Langmuir  condition  (eq.  (19))  in  the  sense  that  the  precise 
location of the  sheath  boundary is not  defined.  In  the  limit of very  large p, relation (54) 
approaches  the  Tonks-Langmuir  condition. 

THE MEAN ION ENERGY 

The  mean  ion  energy  distribution  resulting  from a monoenergetic  electron  density 
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distribution  in  the  plasma  can be calculated  from  the  ion  distribution  function. For  the 
case cp = 0, the  mean  square  ion  speed is given  by (ref. 4) 

This  relation is, in  general,  valid  provided  that  the  spatial  variation of electron  density 
is given  by  nm(0)e-77. For the  case  in  which  n  the  primary  density,  does  not  vanish, 
the  plasma  equation (12) can  be  written 

P' 

where 

The  ion  distribution  function is given by 

A Schliimilch  transformation of equation  (56)  allows  equation  (57)  to  be  written as 

Noting  that 

f f(v)dv = ni 

one  obtains 

The  mean  square  ion  speed is given  by 

(v? 1 ) = 1 Jv2f (v)dv 
"i 

I . 



where 

v2 = (-)(TI 2kT - TI') 
M 

Substituting (58) and (61) into (60) yields  the  mean square speed as a function of 77, 

In appendix C, it is shown  that  the last integrations  in  equations (59)  and  (62)  can  be r e -  
duced, so that  equation  (59)  becomes 

and  equation (62) becomes 

Using  equation  (63)  to  eliminate  the first integral  in  equation (62) and  noting  that 
ni = nm(0) (cpe-PS + e-q) yields,  finally, 

2 kT 
' M  

(v.  ) = -  

For purposes of calculation, this  result  can be simplified  in  the  low-pressure  approxi- 
mation ps << 1 by using  the  substitution e-ps x 1, so that  equation  (65)  becomes 

In the  limit cp - 0, equations  (65)  and  (66)  reduce  to  equation  (55).  Equation  (66) is 
plotted  in  figure 7 for  several  values of cp, including cp = 0. It is seen  that  the  mean 
square  ion  speed  (proportional  to  mean  ion  energy)  decreases with increasing cp. In the 
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limit of very  large 

Thus, for large cp 

cp, equation  (66)  yields  the  result  that 

the  mean  ion  energy ( Ei) = 3 M( vi ) is given  by 1 2 

where Vplasma, the plasma  potential, is negative.  Physically,  relation (68) means 
that  the  average  ion  energy at any  point  in  the  plasma is given  by  the  average  potential 
between  z = 0 and  that  point.  A  large  primary  electron  fraction  means  that  ion  produc- 
tion is more  uniformly  distributed  throughout  the  plasma  than  for  the cp = 0 case.  Be- 
cause  ions  are  produced with a negligibly  small  initial  kinetic  energy, the mean  ion 
energy  at  any  point  in  the  discharge would  be less than that for the cp = 0 case,  in 
which  ion  production is greatest  near  the q = 0 point  (where ne = nm(0)),  and  ions  gain 
kinetic as they fall through  potential 77. 

Also  evident  from  figure 7 is that the Bohm criterion  (relation (45)) is satisfied at 
values of q increasing  with  increasing cp . For very  large  values of rp, relation (45) 
requires  that ,   at  a plasma-sheath  boundary, q 2 1. Thus  comparing  such  calculations 
of the  mean  ion  energy  with  calculations of the maximum  ion  current, I+, could serve 
to  yield  the  plasma-sheath  boundary  value of q for  values of cp > 0. 

PLASMA DENSITY PROFILES 

Often it is the  plasma  electron  density that is experimentally  determined  from  diag- 
nostic  techniques  such as plasma  oscillation  measurements (refs. 17 and  18). In the 
present  problem,  density  profiles  can  be  obtained  from  equation (4) and  the  curves of 
figure  2.  Figure  8  gives the plasma  density  (normalized  to  the  Maxwellian  electron 
density  at  zero  potential) as a function of q and s for  two  values of rp . The  value of 
s is normalized by the  K-factor,  where K = 100 for cp = 0.01  and K = 10 for 
cp = The  curves  show  an  expected  decline  in  plasma  density  with  increasing q 
and s .  

CONCLUSIONS 

The  results of including  primary  electrons  in the plasma  electron  density  in a one- 
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dimensional,  low  pressure  plasma are as follows: 
1. The  potential  distribution  was  found  to  depend  on  ion  generation  mechanisms  in 

the  plasma,  the  ratio of primary  electron  to  Maxwellian  electron  densities at the  poten- 
tial maximum,  and  the  ratio of primary  to  Maxwellian  electron  ionization  frequencies. 

2. With the  inclusion of primary  electron  space-charge  density,  the  Tonks- 
Langmuir  boundary  condition  was  not  satisfied  for  any  value of the  primary  electron  to 
Maxwellian  electron  ratio. An examination of the Bohm sheath  criterion  led  to  the re- 
placement of the  Tonks-Langmuir  boundary  condition  by  one  relating  the  plasma  poten- 
tial gradient  to  the  primary  electron  collision  mean  free  path. 

3. The  effect of primary  electron  scattering  was  much  less  pronounced  and  often 
negligible  over a two order of magnitude  variation  in  the  ratio of characteristic  plasma 
length  (proportional  to  ionization  mean  free  path)  to  beam  electron  total  collision  mean 
free path. 

4. Two approximate  models of the  plasma  were  considered  to  correspond  to  the 
condition of negligible  primary  electron  fraction.  The  plasma  potential  solutions  ob- 
tained  for  these  models  coincided  with  the  exact  solution  except at values of potential 
near  the  Tonks-Langmuir  boundary  value. For  the  case  in which  the  product of the two 
ratios of primary  electron  density to  Maxwellian  electron  density  and  primary  to  Max- 
wellian  electron  ionization  frequencies  was  very  large,  upper  and  lower  bounds  in  the 
beam  fraction  were  obtained.  The  lower bound is essentially  an  existence  condition, 
whereas  the  upper bound was  obtained  by  matching  the  approximate  solution  to  the  exact 
solution. 

5. The  ion  current  density  distribution  in  the  plasma was also  affected by  the pres- 
ence of primary  electron  space  charge.  The  deviation  from  the  case of no primary  elec- 
trons  depended  primarily on the  primary  fraction. In the  absence of a primary  electron 
space  charge  contribution  the  variation of ion  current  density with plasma  potential  was 
independent of ion  generation  mechanisms.  The  variations of the  ion  current  density 
with  plasma  potential  exhibited  maxima  for  different  values of primary  electron  fraction. 
By analogy  to  the  zero  beam  solution,  these  maxima  could  serve  to  define a plasma- 
sheath  boundary,  assuming  that  the  maximum  ion  current is delivered  to  the  boundary. 

6. The  mean  ion  energy  in  the  plasma  was  found  to  be  modified by the  presence of 
primary  electrons  such  that  the  mean  ion  energy at a given  value of potential  was  less 
than  the  case of zero  primary  electrons.   This  result  could  be  understood  from  the  fact 
that  the  presence of primary  electrons  yields a more  uniform  ion  production  throughout 
the  plasma. 

It is of interest  to  conjecture on the  applicability of the  preceding  analysis  to  the 
discharge  plasma of bombardment  thrusters. It is apparent  that  primary  electrons  in 
the  discharge  play  an  important  role  in  determining  plasma  behavior. For  example, 
energy  losses  due  to  ions  dissipating  their  energy  in  wall  collisions  could  be  minimized 
in  the  presence of a high primary  fraction,  because  the  mean ion energy would be lower 
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(see  (6))  and  ion  production  would  be  more  uniformly  distributed  throughout  the  dis- 
charge. It is obvious,  however,  that  the  analysis is a gross simplification of the  actual 
discharge  environment of such  thrusters. If possible, a more  refined  analysis  should 
include the effect of a magnetic  field  on  the  electron  distribution. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  October  9,  1970, 
120-26. 
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APPENDIX  A 

SYMBOLS 

A  ion  mass,  atomic mass units 

Bpv’ cpv’ D p v  coefficients  defined  by  relations (18) 

coefficient  in series expansion,  equation (13) 

the  Dawson  function, [ ex2 dx 

modified  Debye  length  (eq.  (21)) 

Ei 
e electron  charge 

ion  kinetic  energy 

the  ratio ne (s)/n, (0) 

normalized  ion  current  density  (eq. (36)) 

* 

l f h )  integral  defined by eq. (37) 

J+ 
K normalization  factor  in  fig. 8 

ion  current  density 

k  Boltzmann  constant 

L 

L* 

plasma  characteristic  length, urn - r:Y2 
plasma  characteristic  length, v p(z;c)’” - 

M  ion  mass 

m  electron  mass 

*i 

ne 

volume  ion  production rate 

electron  density 

* 
“e defined by eq. (6) 

ni ion  density 

nm (0) Maxwellian  electron  density  at z = 0 

n 
P 

primary  electron  density 
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n 
Pl 

np(0) 

s, s' 

S* 

T 

V 

vC 

( V i  ) 

z, z' 

P 

€0 

2 

11 

T O  

e 
x 

cp 

total  electron or plasma  density 

primary  electron  density at z = 0 

dimensionless  position  variables  defined  in eq. (7) 

dimensionless  position  variable  defined  in eq. (28) 

plasma  electron  temperature 

plasma  potential 

cathode  sheath  drop,  V 

mean  square  ion  speed 

position  variables 

eVc/kT 

free space  permittivity 

dimensionless  potential  variable  defined  in  eq. (7) 

value of 77 at Tonks-Langmuir  boundary 

angle  parameter  used  in  Schlijmilch  transformation of equation  (12) 

total  primary  electron  collisional  mean  free  path 

Debye length, [cokT/E 2  nm(0)]  1/2 

Maxwell  electron  ionization  mean  free  path 

primary  electron  ionization  mean free path  in  eq. (21) 

summation  indices 

Maxwellian,  primary  electron  ionization rates, s e c - l  

the  ratio v /v 

the ratio L/X and L*/X 

dimensionless  variable, -V/Vc 

the ratio  n (0)/nm (0) 

P m  

P 
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APPENDIX B 

SERIES SOLUTION TO  THE PLASMA EQUATION (12) 

The  equation to be  solved is 

Let 

Then 

2 2  2 77 = x2, 77' = x sin 8 = x* 

d G  = x c o s  8 =- dx' 
de 

and  equation  (Bl)  transforms  to 

The  Schlijmilch  inversion  formulas  (ref. 14) can now be  applied. 

We note  that 

h(x') = z  ([ye -ps' + e-x'2) ds' 
2 dx' 

f(x) = -  An/z h(x')d8 
a 

where 
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h(x) = f (0) + x A"' f'(x sin B)de 

where  the  prime on f denotes  differentiation  with  respect  to its argument.  Substituting 
(B3) to  (B5) into (B7) yields 

Using  the  identity  sin2 = 1 - cos2 allows  equation (B8) to be written as 

2 
- p s ' E  dB = 1 + cp - 2xe D(x) - 

((cpe dx' 2 
-X -Ps + e -.') ds (B9) - 

dx 

Equation  (B9) is thus  the  transformed  plasma  equation (12) of the text. 
To  equation  (B9)  the series 

s = anx n 

n = l  

is applied.  The  factor e-ps requires  an  approximation. For low pressure  plasmas 
ps << 1, so that e-ps NN 1 - ps.  Then 

and 

00 

ds' de N" (q + l)aq+l sinq€) dB 
dx' q=o 
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In order  to  evaluate  the  integrals on the  right  side of equation  (B12),  the  sums  need  to 
be  separated  into  even  and odd powers of x. 

From  tables (ref. 19) 

and 

sin2pL+10 d0 = - (-1) 1 

22 lJ 
v = o  

s o  that 

00 

00 

+ 2 ~ &  ( p  + 1 ) a 2 p + 2 [ 2  (-1)’ (2p + l)! 1. 2p+1 (B16) 
22 p 

(2p + 1 - 2v)(2p + 1 - v) !v!  
v = o  1-1 =O 

For  the  second  sum, 



m 2u-1 

p=1 q=o 

p=o q=o 

Substituting  equation  (B14)  and (B15) into  (B18)  yields  the s e r i e s  form for C2.  Thus, 
the  integral (eq.  (B12))  can  be  written 

03 a P  
- de (21-1 + 1)Apa2p+1x2p + 2 BJP + l)a2p+2x  2 p+l 
d x ’  2 p =O p=o v=o 

where 

and 

Bpv  -& - [ ( -1y (2p  + l)! 
2 2p  (2p + 1 - 2v)(2p + 1 - v)!v! 1 

The  series  expansions of other  terms  in  equation (B9) a r e  
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where 

and 

2 (- 1) p2 px2 
2xemX D(x) = - 

(2p - l)!!. 
p =1 

-X ds 2 *EL 2 p+1 

dx y=o v=o p=o v=o 

% v  - 
- W V  (2p + 1 - 2v) 

DPv 
= 2 U ( p + l - v )  

V I  

Now, we substitute  equations (B19) and (B22) to (B24) into (B9) to obtain  the ser ies   rep-  
resentation of the  plasma  equation. 

28 



The  expansion (eq.  (B27)) is then  used  to  obtain  the  recurrence  relations  in  the  coeffi- 
cients an of the series (eq.  (B10)). 

For p = 0, one  obtains 

a 
- 5 ~oal  + - COOal 1 + 
2  2 

a 

and  since Coo = 1 

Also,  from  the  coefficient of x , 1 

E A O a l  + n550a2 - -p5cpal  a 2 7 7   + - D  a 0 
2 2 2 0 0 2 =  

s o  that 

For  p > 0, one  obtains 

1 

J 

For the  coefficients of odd powers of x,  and  from  even  powers of x 

P P-1 

v = l  v=o 
+ (-1)'2' - x ~ ~ ~ a ~ ~ + ~ - ~ ~  

- 2prp c pB p-1, v a(2p + l ) ( t p  + 1) I 2 033 3 ) 
(2p - l)!! 2 

29 



Using  equations (B29) and  (B31)  to  (B33)  the se r i e s  (B10) was computed  for 40 terms.  
The  parameter 5 was varied  from  0.1  to 100, was varied  from 0.00016 to 0.5, and 
p was varied  from 0.01 to  1.0.  The  convergence of the  ser ies  was quite  rapid  for 
,u 2 10  and 77 5 1.21.  
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APPENDIX C 

REDUCTION OF CERTAIN  INTEGRALS 

In the  calculation of mean  ion  energy  in  the  plasma, two integrals  occur  that  require 
special  treatment.  Since  the  procedure  for  reducing  these  integrals is identical, a de- 
tailed  treatment will be  given  only for one of the  integrals. 

Consider  the  integral  occurring  in  equation (56) 

where 

In order   to   reverse  the order  of integration, we introduce  the  step  function 

for q" > q' 
A(q'  - q")  = 

to  eliminate  the q' upper  limit  in  equation  (Cl).  Thus 

Let 

The  following  sketch  can  be  used  to  evaluate  equation  (C5). 

C' 
,rlntegrand 

0 

31 



For q" < q, equation (C5) yields 

I = 2 tan-' 

For q" > q, it is apparent  that I = 0. Thus,  equation (C4) becomes 

From  equation (C2), we can  write 

f(q) = - - -  1 d (e-PS) 
P dr) 

s o  that 

The  second  integral of interest  is, from  equation (60), 

Again,  using  the step function (C3) to  replace  the q' upper  limit by 00 allows  reversal  
of the  order of integration. In this  case 

s o  that  for q" < 77 

I = (q - 7 " )  - TI 

2 

and,  again, I = 0 for q" > q.  In this way the  integral (eq. (C9)) becomes 
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Integration by parts of the  right  side of equation ((212) yields 
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Figure 1. - Diode configuration  and plasma  potential  distribution. 
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